分 式-免费教案
分 式-免费教案!1.使学生理解并掌握分式的概念,了解有理式的概念;
p>
4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.
二、重点、难点、疑点及解决办法
1.教学重点和难点 明确分式的分母不为零.
p>
【新课引入】
前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)
【新课】
1.分式的定义
(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:
用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.
(p>
①分母中含有字母.
②如同分数一样,分式的分母不能为零.
(4)问:何时分式的值为零?[以(p>
请学生类比有理数的分类为有理式分类:
例1 当取何值时,下列分式有意义?
(1);
解:由分母得.
∴当时,原分式有意义.
(p>
∴当时,原分式有意义.
(3);
解:∵恒成立,
∴取一切实数时,原分式都有意义.
(4).
解:由分母得.
∴当且时,原分式有意义.
思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?
例p>
解:由分子得.
而当时,分母.
∴当时,原分式值为零.
小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.
(p>
而当时,分母,分式无意义.
当时,分母.
∴当时,原分式值为零.
(3);
解:由分子得.
而当时,分母.
当时,分母.
∴当或时,原分式值都为零.
(4).
解:由分子得.
而当时,,分式无意义.
∴没有使原分式的值为零的的值,即原分式值不可能为零.
(四)总结、扩展
1.分式与分数的区别.
p>
(五)随堂练习
1.填空题:
(1)当时,分式的值为零
(p>
p>
教材P56中A组3、4;B组(1)、(p>
课题 例1
1.定义 例p>
《分 式》由www.cjzxxx.com摘录,版权归作者所有,转载请注明出处!
【温馨提示】所有资源完全免费,仅供学习和研究使用,版权和著作权归原作者所有,如损害了您的权益,请与站长联系修正。
以上就是关于“分 式-免费教案”的内容,希望大家看的开心,看的愉快,也希望大家能够积极的分享本网站,让更多的人看到本站的“分 式-免费教案”内容,谢谢!